Author: Shane Guan

Motivation:

I wanted a method to express the nth order derivative without needing to use index notation. For instance, the first "derivative" of $f(x)=x x^{T}$ is a 3 d tensor, whose terms are

$$
\frac{\partial\left[x x^{T}\right]_{i, j}}{\partial x_{k}}=1_{k=i} x_{j}+1_{k=j} x_{i}
$$

It's hard for me to visualize what this 3 d tensor looks like. Also, this 3 d tensor notation is only so that we can write $\Delta f \approx \frac{\partial f}{\partial x} \Delta x$ with the change in input Δx on the right and the derivative on the left of the product. I think if we get rid of that restriction, then we can simply write something like $\Delta\left(x x^{T}\right) \approx(\Delta x) x^{T}+x(\Delta x)^{T}$ which is intuitively what the 3 d tensor is telling us it's doing.

I also believe that the method I developed can be used to easily find the final simplification of the nth order term in the Taylor expansion.

1 A method for understanding higher order derivatives of vector input, matrix output functions

Let's assume the only operations in the function $f(x)$ are dot product, matrix-matrix, matrix-vector product, and scalar operations. Let $x \in \mathbb{R}^{m}$ be a vector of m components.

1.1 Understanding the first order derivative

We are effectively finding another function $d_{x}^{1} f$ that takes as input (x, δ), where δ is some vector input of the same shape as x. I pronounce this as the 1 st order del function of f with respect to x. This function has the property such that $\frac{\partial f}{\partial x_{i}}=\frac{\partial\left(d_{x}^{1} f\right)}{\partial \delta_{i}}$.
To find $\left(d_{x}^{1} f\right)(x, \delta)$, we use the following rules

Base Case:

$$
\begin{aligned}
f(x)=x & \Longrightarrow d_{x}^{1} f(x, \delta)=\delta \\
f(x)=x^{T} & \Longrightarrow d_{x}^{1} f(x, \delta)=\delta^{T} \\
f(x)=A & \Longrightarrow d_{x}^{1} f(x, \delta)=0
\end{aligned}
$$

Linearity:

$$
f(x)=A W(x)+M(x) B \Longrightarrow d_{x}^{1} f=A\left(d_{x}^{1} W\right)+\left(d_{x}^{1} M\right) B
$$

Product (matrix-matrix or matrix scalar, or matrix vector):

$$
f(x)=W(x) M(x) \Longrightarrow d_{x}^{1} f(x, \delta)=W(x)\left(d_{x}^{1} M\right)+\left(d_{x}^{1} W\right) M(x)
$$

Chain rule:

$$
f(x)=W(M(x)) \Longrightarrow d_{x}^{1} f(x, \delta)=d_{M}^{1} W\left(M(x), d_{x}^{1} M(x, \delta)\right)
$$

In words, you first find the del function of W wrt its input M , and plug in $d_{x}^{1} M$ for δ.
Element-wise function (where $*$ is element-wise multiply):

$$
[f(x)]_{i}=s\left(x_{i}\right) \Longrightarrow d_{x}^{1} f(x, \delta)=s^{\prime}(x) * \delta
$$

Examples:

$$
\begin{gathered}
\left(d_{x}^{1} x^{T} x\right)(x, \delta)=x^{T} \delta+\delta^{T} x=2\langle\delta, x\rangle \\
\left(d_{x}^{1} x x^{T}\right)(x, \delta)=x \delta^{T}+\delta x^{T} \\
\left(d_{x}^{1} A x x^{T} B\right)(x, \delta)=A x \delta^{T} B^{T}+A \delta x^{T} B^{T}=A\left(x \delta^{T}+\delta x^{T}\right) B^{T} \\
{\left[d_{x}^{1} x \sin (x)^{T}\right](x, \delta)=x(\cos (x) * \delta)^{T}+\delta \sin (x)^{T}}
\end{gathered}
$$

1.1.1 Conjectures

I believe that, given any f that satisfies our assumptions in the beginning, then $d_{x}^{1} f(x, \delta)$ will always be linear in δ.

Also, for a vector-valued function $f(x)$, the first order del function is just the Jacobian J times δ :

$$
d_{x}^{1} f(x, \delta)=J \delta
$$

1.2 Understanding the nth order derivative

The spirit for the nth order del function is the same. This is a function $d_{x}^{n} f(x, \Delta)$, where Δ is the set of n vectors $\Delta=\left\{\Delta_{i}: i \in[n], \Delta_{i} \in \mathbb{R}^{m}\right\}$. The first order del function has Δ as the singleton vector δ.
This nth order del function $d_{x}^{n} f(x, \Delta)$ is such that $\frac{\partial^{n} f}{\prod_{i \in \mathcal{S}} \partial x_{i}}=\frac{\partial^{n}\left(d_{x}^{n} f\right)}{\prod_{i \in[n]}^{\partial \Delta_{i, S_{i}}}}$, where \mathcal{S} is some n element bag of the indices of the vector x (so $\Delta_{i, S_{i}}$ is the S_{i} th component of the vector Δ_{i}). Higher order del functions will be found using this following method (where $\delta_{\text {new }} \notin \Delta$):

$$
d_{x}^{n+1} f\left(x, \delta_{\text {new }} \cup \Delta\right)=\left[d_{x}^{1}\left(d_{x}^{n} f\right)\right]\left(x, \delta_{\text {new }}\right)
$$

In other words, we take the 1 st order del function of $d_{x}^{n} f(x, \Delta)$ with respect to x (letting Δ be treated as a constant).

Example: Suppose

$$
f(x)=A x x^{T} B
$$

Then

$$
\begin{gathered}
d_{x}^{1} f=A\left(x \Delta_{1}^{T}+\Delta_{1} x^{T}\right) B \\
d_{x}^{2} f=A\left(\Delta_{2} \Delta_{1}^{T}+\Delta_{1} \Delta_{2}^{T}\right) B \\
d_{x}^{3} f=0
\end{gathered}
$$

1.2.1 What is it really doing?

I believe that if you replace every element of Δ with the same vector δ, then $d_{x}^{n} f(x, \Delta)$ is the same as the nth term in the Taylor expansion of $f(x+\delta)$ scaled by $n!$. This follows if the linearity conjecture in section 1.1.1 holds.

1.2.2 A more detailed example

Suppose you want to show that the following function is non-smooth as $\|x\|_{2} \rightarrow 0$ (the function comes from ridge regression, and $\left\|w^{*}\right\|_{2}=1$)

$$
f(x)=\left\|w^{*}-\frac{x}{\|x\|_{2}}\right\|_{2}^{2}
$$

Or in other words that the spectral norm of f is unbounded by a constant as $\|x\|_{2} \rightarrow 0$. The gradient is

$$
g(x)=\nabla_{x} f=\frac{1}{\|x\|_{2}}\left(I-\frac{x x^{T}}{\|x\|_{2}^{2}}\right)\left(\frac{x}{\|x\|_{2}}-w^{*}\right)=\frac{1}{\|x\|_{2}}\left(\frac{x x^{T}}{\|x\|_{2}^{2}}-I\right) w^{*}
$$

Now we find the del function of each of the terms in the gradient

$$
\begin{gathered}
d_{x}^{1} \frac{1}{\|x\|_{2}}=d_{x}^{1}\left[\left(x^{T} x\right)^{\frac{-1}{2}}\right]=\frac{-1}{2}\|x\|_{2}^{-3}\left(2 x^{T} \delta\right)=-\frac{x^{T} \delta}{\|x\|_{2}^{3}} \\
d_{x}^{1} \frac{x}{\|x\|_{2}}=-\frac{x x^{T} \delta}{\|x\|_{2}^{3}}+\frac{\delta}{\|x\|_{2}}=\frac{1}{\|x\|_{2}}\left(I-\frac{x x^{T}}{\|x\|_{2}^{2}}\right) \delta \\
d_{x}^{1}\left(\frac{x x^{T}}{\|x\|_{2}^{2}}\right)=\frac{1}{\|x\|_{2}^{2}}\left(d_{x}^{1} x x^{T}\right)+x x^{T}\left(\frac{-1}{\|x\|_{2}^{4}} 2 x^{T} \delta\right)=\frac{1}{\|x\|_{2}^{2}}\left(\delta x^{T}+x \delta^{T}\right)+x x^{T}\left(\frac{-1}{\|x\|_{2}^{4}} 2 x^{T} \delta\right) \\
d_{x}^{1}\left(\frac{x x^{T}}{\|x\|_{2}^{2}}\right)=\frac{1}{\|x\|_{2}^{2}}\left[\left(I-\frac{2 x x^{T}}{\|x\|_{2}^{2}}\right) \delta x^{T}+x \delta^{T}\right]
\end{gathered}
$$

Now we combine the terms to find something representing the Hessian

$$
\begin{gathered}
d_{x}^{1} g=\left(d_{x}^{1} \frac{1}{\|x\|_{2}}\right)\left(\frac{x x^{T}}{\|x\|_{2}}-I\right) w^{*}+\frac{1}{\|x\|_{2}}\left[d_{x}^{1}\left(\frac{x x^{T}}{\|x\|_{2}}-I\right)\right] w^{*} \\
d_{x}^{1} g=-\frac{x^{T} \delta}{\|x\|_{2}^{3}}\left(\frac{x x^{T}}{\|x\|_{2}}-I\right) w^{*}+\frac{1}{\|x\|_{2}^{3}}\left[\left(I-\frac{2 x x^{T}}{\|x\|_{2}^{2}}\right) \delta x^{T}+x \delta^{T}\right] w^{*} \\
d_{x}^{1} g=\frac{1}{\|x\|_{2}^{3}}\left[\left(I-\frac{x x^{T}}{\|x\|_{2}}\right) x^{T} \delta+\left(I-\frac{2 x x^{T}}{\|x\|_{2}^{2}}\right) \delta x^{T}+x \delta^{T}\right] w^{*}
\end{gathered}
$$

Because the spectral norm of the Hessian is $\sup _{\|\delta\|_{2}=1}\|H \delta\|_{2}$, and $d_{x}^{1} g=H \delta$ by definition, it is clear that bounding the spectral norm of the Hessian is the same as bounding $\sup _{\|\delta\|_{2}=1}\left\|d_{x}^{1} g\right\|_{2}$. Since we are showing that the spectral norm is not bounded by a constant for any x as $\|x\|_{2} \rightarrow 0$, we can take $\left\langle x, w^{*}\right\rangle=0$. Also, suppose $\delta=\frac{x}{\|x\|_{2}}$. Then

$$
\begin{gathered}
d_{x}^{1} g(x, \delta)=\frac{1}{\|x\|_{2}^{3}}\left[x^{T} \delta w^{*}+x \delta^{T} w^{*}\right]=\frac{1}{\|x\|_{2}^{3}}\left[x^{T} \delta w^{*}\right] \\
\left\|d_{x}^{1} g\right\|_{2}^{2}=\frac{1}{\|x\|_{2}^{6}}\left[\left(x^{T} \delta\right)^{2}\left\|w^{*}\right\|_{2}^{2}\right]=\frac{1}{\|x\|_{2}^{4}}
\end{gathered}
$$

Hence

$$
\sup _{\|\delta\|_{2}=1}\left\|d_{x}^{1} g\right\|_{2}^{2} \geq \frac{1}{\|x\|_{2}^{4}}
$$

Thus we have shown that f is non-smooth as $\|x\|_{2} \rightarrow 0$.

