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Motivation:
I wanted a method to express the nth order derivative without needing to use index notation. For
instance, the first “derivative” of f(x) = xxT is a 3d tensor, whose terms are

∂[xxT ]i,j
∂xk

= 1k=ixj + 1k=jxi

It’s hard for me to visualize what this 3d tensor looks like. Also, this 3d tensor notation is only so
that we can write ∆f ≈ ∂f

∂x∆x with the change in input ∆x on the right and the derivative on the
left of the product. I think if we get rid of that restriction, then we can simply write something
like ∆(xxT ) ≈ (∆x)xT + x(∆x)T which is intuitively what the 3d tensor is telling us it’s doing.

I also believe that the method I developed can be used to easily find the final simplification of the
nth order term in the Taylor expansion.

1 A method for understanding higher order derivatives of vector
input, matrix output functions

Let’s assume the only operations in the function f(x) are dot product, matrix-matrix, matrix-vector
product, and scalar operations. Let x ∈ Rm be a vector of m components.

1.1 Understanding the first order derivative

We are effectively finding another function d1
xf that takes as input (x, δ), where δ is some vector

input of the same shape as x. I pronounce this as the 1st order del function of f with respect to x.

This function has the property such that ∂f
∂xi

= ∂(d1xf)
∂δi

.

To find (d1
xf)(x, δ), we use the following rules

Base Case:
f(x) = x =⇒ d1

xf(x, δ) = δ

f(x) = xT =⇒ d1
xf(x, δ) = δT

f(x) = A =⇒ d1
xf(x, δ) = 0

Linearity:
f(x) = AW (x) +M(x)B =⇒ d1

xf = A(d1
xW ) + (d1

xM)B

Product (matrix-matrix or matrix scalar, or matrix vector):

f(x) = W (x)M(x) =⇒ d1
xf(x, δ) = W (x)(d1

xM) + (d1
xW )M(x)

Chain rule:
f(x) = W (M(x)) =⇒ d1

xf(x, δ) = d1
MW (M(x), d1

xM(x, δ))

In words, you first find the del function of W wrt its input M, and plug in d1
xM for δ.

Element-wise function (where ∗ is element-wise multiply):

[f(x)]i = s(xi) =⇒ d1
xf(x, δ) = s′(x) ∗ δ
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Examples:
(d1
xx

Tx)(x, δ) = xT δ + δTx = 2〈δ, x〉

(d1
xxx

T )(x, δ) = xδT + δxT

(d1
xAxx

TB)(x, δ) = AxδTBT +AδxTBT = A(xδT + δxT )BT

[d1
xx sin(x)T ](x, δ) = x(cos(x) ∗ δ)T + δ sin(x)T

1.1.1 Conjectures

I believe that, given any f that satisfies our assumptions in the beginning, then d1
xf(x, δ) will always

be linear in δ.

Also, for a vector-valued function f(x), the first order del function is just the Jacobian J times δ:

d1
xf(x, δ) = Jδ

1.2 Understanding the nth order derivative

The spirit for the nth order del function is the same. This is a function dnxf(x,∆), where ∆ is the
set of n vectors ∆ = {∆i : i ∈ [n], ∆i ∈ Rm}. The first order del function has ∆ as the singleton
vector δ.

This nth order del function dnxf(x,∆) is such that ∂nf∏
i∈S ∂xi

= ∂n(dnxf)∏
i∈[n] ∂∆i,Si

, where S is some n

element bag of the indices of the vector x (so ∆i,Si is the Sith component of the vector ∆i). Higher
order del functions will be found using this following method (where δnew 6∈ ∆):

dn+1
x f(x, δnew ∪∆) = [d1

x(dnxf)](x, δnew)

In other words, we take the 1st order del function of dnxf(x,∆) with respect to x (letting ∆ be
treated as a constant).

Example: Suppose
f(x) = AxxTB

Then
d1
xf = A(x∆T

1 + ∆1x
T )B

d2
xf = A(∆2∆T

1 + ∆1∆T
2 )B

d3
xf = 0

1.2.1 What is it really doing?

I believe that if you replace every element of ∆ with the same vector δ, then dnxf(x,∆) is the same
as the nth term in the Taylor expansion of f(x + δ) scaled by n!. This follows if the linearity
conjecture in section 1.1.1 holds.
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1.2.2 A more detailed example

Suppose you want to show that the following function is non-smooth as ‖x‖2 → 0 (the function
comes from ridge regression, and ‖w∗‖2 = 1)

f(x) =

∥∥∥∥w∗ − x

‖x‖2

∥∥∥∥2

2

Or in other words that the spectral norm of f is unbounded by a constant as ‖x‖2 → 0. The
gradient is

g(x) = ∇xf =
1

‖x‖2
(I − xxT

‖x‖22
)(

x

‖x‖2
− w∗) =

1

‖x‖2
(
xxT

‖x‖22
− I)w∗

Now we find the del function of each of the terms in the gradient

d1
x

1

‖x‖2
= d1

x[(xTx)
−1
2 ] =

−1

2
‖x‖−3

2 (2xT δ) = − x
T δ

‖x‖32

d1
x

x

‖x‖2
= −xx

T δ

‖x‖32
+

δ

‖x‖2
=

1

‖x‖2
(I − xxT

‖x‖22
)δ

d1
x(
xxT

‖x‖22
) =

1

‖x‖22
(d1
xxx

T ) + xxT (
−1

‖x‖42
2xT δ) =

1

‖x‖22
(δxT + xδT ) + xxT (

−1

‖x‖42
2xT δ)

d1
x(
xxT

‖x‖22
) =

1

‖x‖22
[(I − 2xxT

‖x‖22
)δxT + xδT ]

Now we combine the terms to find something representing the Hessian

d1
xg = (d1

x

1

‖x‖2
)(
xxT

‖x‖2
− I)w∗ +

1

‖x‖2
[d1
x(
xxT

‖x‖2
− I)]w∗

d1
xg = − x

T δ

‖x‖32
(
xxT

‖x‖2
− I)w∗ +

1

‖x‖32
[(I − 2xxT

‖x‖22
)δxT + xδT ]w∗

d1
xg =

1

‖x‖32
[(I − xxT

‖x‖2
)xT δ + (I − 2xxT

‖x‖22
)δxT + xδT ]w∗

Because the spectral norm of the Hessian is sup‖δ‖2=1 ‖Hδ‖2, and d1
xg = Hδ by definition, it is

clear that bounding the spectral norm of the Hessian is the same as bounding sup‖δ‖2=1 ‖d1
xg‖2.

Since we are showing that the spectral norm is not bounded by a constant for any x as ‖x‖2 → 0,
we can take 〈x,w∗〉 = 0. Also, suppose δ = x

‖x‖2 . Then

d1
xg(x, δ) =

1

‖x‖32
[xT δw∗ + xδTw∗] =

1

‖x‖32
[xT δw∗]

‖d1
xg‖22 =

1

‖x‖62
[(xT δ)2‖w∗‖22] =

1

‖x‖42
Hence

sup
‖δ‖2=1

‖d1
xg‖22 ≥

1

‖x‖42
Thus we have shown that f is non-smooth as ‖x‖2 → 0.
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